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Abstract. An exact solution of the local state probability (spontancous magnetization)
of a fusion cyclic solid-on-solid (cSos) model is obtained for a special (2-fusion) case. It
is composed of ratios of theta functions and branching coefficients. Using the modular
propetty its critical behaviour is analysed. In addition, a conjecture for the local state
probability of the V-fusion cs0s model is proposed.

1. Introduction

Local state probabilities (LSPs) of many 2D lattice models are modular functions.
Considering the reason why the spontaneous magnetization of the 2D Ising model is
obtained exactly [1], one notices that there is a hidden structure of modular functions.
This structure is more explicitly exposed (2] for the eight vertex solid-on-solid (8vsos)y
model. The svsos model is a generalization of the 2D Ising model and the hard
hexagon model, satisfying the Yang-Baxter equation, and is exactly solved by the
corner transfer matrix method. The state variable takes 1,2,...,L — 1(> 3). Its
Boltzmann weight is parametrized by elliptic functions with nome p. The final output
LSP is expressed in a g-series of the conjugate nome gq.

Subsequently we only consider the so-called regime III cases [2]. This regime
corresponds to an ordered phase between T = 0 and T = T,. After the corner
transfer matrix calculation the LSP is given in a low-temperature expansion form. At
this stage we cannot see the critical behaviour of the system since all terms in the
expansion contribute at the critical point. However if we can sum the infinite series
as a modular function or a combination of modular functions, we can see the critical
behaviour of the system by a conjugate modulus transformation.

The Lsp of 3vs0s model was later shaped in compact forms of affine Lie algebra
characters (and their branching coefficients) [3]. The characters are ratios of theta
functions. The branching coefficients are expansion coefficients in the theta-function
sums-of-products identities [3]. For higher-spin extensions (fusion model) of the
8vS0S model the [sps have the same structure [3], ie. they comprise affine Lie
algebra characters and branching coeflicients. We shall refer to this model as the
spin-/V /2 restricted solid-on-solid (Rs0S) model.

Recently we have presented a new hierarchy for solvable models, the higher-spin
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model in [5] or from the €S0$ model in [6].

As we have pointed out there, the spin-N/2 Cs0s model can be constructed if

NL-1(N<L/2-1)for odd (even) L. In this paper we aim to calculate the
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Lsp of this higher-spin Csos model. Although the method used in this paper can be
applied to N-fusion models with arbitrary N, we shall concentrate on the calculations
for the 2-fusion case specifically. The main part of the calculation i a summation
over paths. We expect the resulting expression to be in terms of theta functions. We
make the calculation into a recursion formula and iterate the recursion relation to a
sufficiently large order. Then we compare the calculated result with the expansion of
the expected expression. We use REDUCE for the calculations.

In section 2 we briefly explain how one can calculate the LSPs of these models
by the corner transfer matrix method. The techniques shown here are applied to our
csos model in section 3. In particular we shall fully analyse the spin 1 (2-fusion)
csos model and obtain a recursion relation. In section 4 we evaluate the solution
of this recursion relation in the thermodynamic limit, and obtain the LSP in terms of
modular functions. In section 5 we give some concluding remarks.

Here we shall give some notation which will be used later. We use two
nomes ¢ and #(= pX/?) (0 € ¢, t < 1), they are conjugate to cach other
((log q)(log t) = 4=?). We parameterize the nomes as follows,
g=e e g2 (1.1)
with a real parameter €. The nome q is used for a low-temperature parameter, while
the nome ¢ measures the deviation from the critical point. We also use the following
notation

e=et (= ) w=ette 1.2)

We use the parameter w as a label that characterizes the double limit, ¢ — 0 and
simultaneously v — 0, with a fixed value of u/e. The former corresponds to the low
temperature limit, while the latter means the extreme anisotropy lmit.

2. Calculation of the LsP from the Boltzmann weight

In this section we shall briefly summarize the LSP calculation by the corner transfer
matrix method, that is used in the next section.

Define P(alb,c) as the probability, in classical statistical mechanics, for a
particular site having the spin value a when a background configuration is specified
by b,e. This P is the LSP. A background configuration b,c is a type of boundary
condition for an infinitely extended lattice system on which the checkerboard b,¢
configuration is realized at the low-temperature limit. (We only consider the
case where a and b are on the same sublattice.) In later sections we also use
r=3(b+c-N), s=}(b—c+ N}+1, in order ta label a background configuration
for N-fusion (spin-N/2) models.

We calculate the LsP by using the corner transfer matrix method. From local
Boltzmann weights, parametrized by elliptic theta functions and satisfying the Yang—
Baxter equation (this is crucial for the following calculation techniques, see [2,7]), we
construct a corner transfer matrix. Due to the Yang-Baxter equation and therefore
the commuting row-to-row transfer matrices, the corner transfer matrix becomes an
exponential function with respect to the spectral parameter u in the thermodynamic
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limit. We can diagonalize the matrix in a non-trivial way by taking a double limit of
two parameters, the spectral parameter « and the elliptic nome p = e~¢/L.

uw— -0 e —+0,(ufe) : fixed. (2.1)

This diagonalization arises from the following diagonal property of the local
Boltzmann weight S in the double limit (2.1),

. a d —Ha,b,c
c_.%T_.nS(b c ") = 8, - w A0 22)
u/s;ﬁxed

where w = «*. In general a matrix element of a corner transfer matrix is constructed
as a summation over infinitely many internal spin configuraions, so it has infinitely
many terms. However by this diagonalization all but one term should vanish for each
of the diagonal elements. In this diagonalized corner transfer matrix, its diagonal
elements are labelled by admissible paths (o4, a,,...) of the model. If the system is
infinitely large, they are exactly the eigenvalues of the matrix even for finite values
of uand e. Let A(u), B(u), C(u) and D(u) be the four corner transfer matrices
corresponding to the four quadrants of the 2D space as usual [7]. We assume that they
are given to a specified background configuration b, ¢. Because of the symmetries in
the local Boltzmann weights, C(u) = A(u) and B(u) = D(u) = A(—1-u) up to
the gauge factors. We take a partial trace as

u(alb, c) = Tr{cn:a} A(u)B(u)C(u)D(u) (23)

where the spin value at the central site is fixed to a. Having evaluated this trace, we
can get the LSP as

u(alb,c)
Ea' p,(a'[b, c) )

The partial trace p(alb,c) is a 1D configuration sum multiplied by gauge factors.
First we give the finite sum X, over finite step paths.

Plalb,c) = 2.4

ki

Sm(ala"'!am+2)=Zj'H(aj$aj+lao'j+2) (2.5)
i=1
X, (alp,c) = 3 g mta), 2.6)

(1720 m 42 )Epaths
T1=6,F 41 =b, Ty g2 =C

As ¥ . z71=% . g% x~1=% = £~ 2 the factor w~H(***} appearing in (2.2) has been
converted to ¢gH(»**), Afterwards we take the limit m — oo to obtain the true trace
of the corner transfer matrix.

The summation over paths means a particular combinatorial summation for each
model, for instance restricted paths for the Rsos model and cyclically restricted paths
for the csos model. The difference between the LsP (therefore the physics) of the
models arises from the difference between the sets of these paths and between the
weight function H(e,e,e} in (2.2).
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3. LSP calculation for fusion CSOS models

Let us consider the LSP calculation for higher-spin cSOS models. For spin-N/2 Rsos
models the weight function H is simply H(a,b,c) = |a —¢|/4 for all N [3]. But for
spin-N /2 csos models, we find that the behaviour of the weight function H should
depend on N. Due to the periodic property of the weights, spin configurations around
a face that have such spin values as 0 or (L — 1) give exceptional weight function

values.

Subsequently we consider the spin-1 cs0s model exclusively. To make this paper
self-contained we shall write its Boltzmann weights as in [4].

a «
S
2Z2la a

a
S (a:I:Z

a
) aF2

lS'22

=~

a ax?2
a

“) =

O(wy+a+2)wy+a—1)H(1+ u)H(u)

_O(wyta+u)O(wy+e—1—u)

+

wy+ a)O(wy + e — 1)

at+?2
a

at?2
a

g

O(wy+ a+ 1)S(wy+a)H(2)H(1)

_O(wytax1Fu)O(w,+ a¥Fu)
- O(wy+ ax 1)O(wy+ a)

g

a a
_Szz(aiZ a

_ Hw)o(wy+aFxu) [Owytax?)
T H(DNO(wyta+1) Hwy+ a)

a

a
Szz(a at? u) -

g a a:!:Zu
Zla a+2

_H1+uw)O(wy+atltu)
H(1NO{wy+axl)

:

a a
= Sz (a:}:Z a+?

ul = H(w)H(-14u) /O(wy+ a+2)O(wy+ a —2)
= T HOHD (a0t @)

_ H(1+ w)H(u) /O(wy+ a+3)0(w,+ aF 1)

where H(v) = 9,(7v/L,#%) and ©(v) = 9,(7v/L,1¥L).

H(2YH(1) Olwy+at1)
ax2| \ _ HO+u)O(w+atlFu)
ax2|"] T T HDG(w +at1)
a2 u\ _HZ+wH(1+u)
at4 H2)H(D)

G.1)
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We use the following notation for the elliptic theta functions,

?(v,p) = 2psinv [ (1 - 2p™ cos 20 4 p™)(1 - p™) 32)
n=l
dy(v,p) = [J(1-2p"? cos 20 + p™~1)(1 = p™). 33)
n=1

These Boltzmann weights have the following symmetries

d ¢ _ d a _ b ¢
=szz(‘; ‘c‘—1~u)x%:;;: (3.4)

A(u), B(u) C(u) and D(u) the comcr transfer matrlces with respect to the

SE, NE, NW and sw quadrants of the 2D space, constructed from S,,. Provided that
the central spin value equals a, they satisfy C(u) = A(u) and B(u) = D(u) =
g, A(—1— u) up to a-independent factors because of (3.4).

Next let us replace the constituent Boltzmann weight S,, of A(w) as follows

(i G =5 ) LG oo

Gy (u)Gy(u)”
where z == ,/q and the spectral parameter-dependent gauge factor G{u) is

Gi(u) = (*)(B/9 W {Trenl/L) W(v) = (v~ [v))(v - [v] - D). (3.6)

This transformed Boltzmann weight S also satisfies the Yang-Baxter equation and
has a suitable form for the double limit (2.2). We are to obtain the weight function
H(e,e,0) from this S, and to consider the recursion relation of X, given by this
weight function. Denoting the SE quadrant corner transfer matrix constructed from
S by A(u), one can see that A(u} = A(u)G, (u) up to a-independent factors. In
the thermodynamic limit the eigenvalues of this A(u) are labelled by the admissible
paths of the model (o, a,,...) and have such forms as (z*)&5%17 Hlo50i410542)
Putting all these together we have

A(u) B(u)C(u) D(u)

= G (u)? x G, (-1-u)? x g x A(u)A(-1- wA(w)A(-1-u) 3.7)
up to a-independent factors. With respect to the jth term of (2.5) we have
((z) H@37i400542) Y2 (= 1=% ) H{05:75410,0542))2 = gf H(500,40,050) (3.8)
and since
Go(u)? x G, (=1 —u)? = (x*)(e(@=DI/ALRZ o (p=1-u(a(a=L)/AL)2 _ p-a(a=L)/2L
(3.9)
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the trace (3.7) and as a result the LsP does not depend on the spectral parameter u
as usual.

Next we give the result for the weight function H of the model. As an example
let us first show that for this model we have

H(0,0,0) = H(L-1,L-1,L-1)=1. (3.10)
Since no gauge factor is needed for this configuration, we have
sle el = Olwyta+u)O(wy+a—1-u)
¢ a O(wy+ a)O(wy+a—1)

O{wy+a+2)0(wpy+a-DH(1+ U)H(UJ] p-u(u /L
O{wy+a+1C(wy+ a)H(2YH(1) '

+

G.11).

Assuming 0 < w; < 1 and taking the double limit (2.2) of the Boltzmann weight
(3.11) we have

-1 _
(the first term) — { w fora=0
1 otherwise
-1 _ _ N
(the second term) — {w 1 fora=1L~1 612
0 otherwise,

Therefore we get (3.10).

‘We also evaluate the double limit (2.2) and obtain the weight function H for all
other configurations, We find that they are indeed diagonal if 0 < w; < 1. The result
is as follows.

H(a,b,c)=|a—c|/4
if
(a,b,¢) # (3,1, L — 1), (L —1,1,3),(2,0, L - 2),(L —2,0,2),
(1,L =1,L—3),(L—3,L—1,1),(0,L -2, L — 4),
(L-4,L-2,0),(0,0,0),(L~1,L—1,L—1),
(0,L-2,00,(1,L-1,1),(L-11,1),
(1,4, L -1),(L-2,0,0),(0,0, L —2),
(L-1,L-1,1),(1,L = 1,L - 1),(L -2, L —2,0),
(0,L-2,L—2),(L-2,0,L-2),(L-1,1,L—1)
H(2,0,L-2) = H(1,1,L = 1) = w,/2
HG,1,L—1) = H(0,0,L —2) = 1/2 + wy/2
H(1,L-1,L—3)= H(0O,L —2,L —2) = 1/2 — w,/2
H(O,L -2, L -4 =H(1,L-1,L-1)=1-~w;/2
H(0,L—2,0)= H(1,L - 1,1) = 1 — w,
H(L-2,0,L -2)= H(L-1,1,L - 1) = w,
H(a,b,c) = H(e,b,a). (3.13}
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We are considering admissible paths (o},0,,...} which satisfy |o; — 0,.,] = 0,2
(mod L) on the space with a periodic boundary (0 = L). This weight function
H(e,e,®) pgives exceptional values for those passages (o;,d;,1,0;,,;) Which cross
or lie on the ‘formal boundaries’ (0 and L — 1) of the space (figure 1). This shows
that (L -1,L ~1),(0,0),(L - 1,1),(1, L — 1),(L — 2,0) and (0, L — 2) are not
allowed to be background configurations. Using (3.13) we can write the recursion
relation of X, for this model. For simplicity we assume w, — +0.

Xy (alb,b+2) 1 g/t qm X,._1(alb+2,b)
X,.(alb,b) =|¢gm? 1 gqm/? X,._(alb,b)
X,.(alb,b=2) g™ qm/7 1 X,nq(alb=2,b)

fb#1,0,L-1,L-2

m(a|1,3) gmit qm/2 X,no1(al3, 1)
m(ﬂll 1) m{2 1 1 Xm-—l(a'“!l)
X,.(a]l,L 1) ml? 1 1 X,oa(alL=1,1)
\

X,,(a|0,2) \ 1 g™/ 1 \( X,, . 1(a]2,0) \
qm/? q’" qm/? X,,_1(a|0,0}
1

X.,.(al0,0)
\ X, (a0, L ~2) ] ¢ 1 \ X, (alL-2,0))

Xm(alL'_ 1’ 1) m q'm qm/Z Xm-—-l(a|11 L- 1)
X, (a|lL=1,L-1) | = q’“ g* q™? || X, _(alb-1,L-1)
X, (a|L—1,L—3) qm/t gm/2 1 X, _(alL-3,L-1)

X (a|L=2,0) g™ ¢t qm Xom-1(el0, L -2)
X,(alL-2,L-2) | = | ¢™/? 1 qm/? Xpoq(a|lL-2,L-2)].
Xm(alL_va_4) qm qmj?. 1 Xm-—l(a]L_“'aL—z)

(3.14)

The initial condition is Xy(alb,c) = é,, if ¢ = b,b+ 2. We compute X, up
to any finite  using this recursion reiation (3.14) and obtain the lower order
terms for X_. In fact up to order m/2 the terms in X, (a[b,c) and those in
lim,, cven 0o Xm (@|B, ¢} are exactly the same.

4. Results of the LSP for the spin-1 cs0S model

4.1. The case of odd L

The solutions of the recursion relation (3.14) for finite yn may have cumbersome
expressions. For the thermodynamic limit we can expect that they will have more
beautiful expressions Indeed they do. One observation is that when we compute X
using the recursion relation, more and more large coefficients appear with respect to
terms with large order of ¢. But if we multiply X, by (¢(¢))? = ([Toe1(1 - ¢™))?,
there remain only small coefficients for any order of q. By this observation we have
been able to find that X - (¢(q))? should certainly be expressed by theta functions,
The following results are based on this type of computational work.
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Figure 1. Exceptional values of the weight function H(e,e,s) of the L-state spin 1
{2-fusion) Cs0s model.

o

Figure Z. Incidence umglnlua for 2-fusion €305 models. Each pal!‘ of state variables
directly connected with either a full line or wavy line is admissible on nearest-neighbour
lattice sites. The pair with a wavy line is not allowed for a background configuration:
(@) 5-state model; (b) 6-state model.

We write the thermodynamic limit of the 1D configuration sum as

fim X, (alb,c) = (b—a)f4-rt [ L-2)- s /16+1/84 " /4L Cr v
T EVEN =00 13,2
where » = (b+c¢—2)/2 and s = (b— c+2)/2+ 1. The extra fractional power of g
is introduced for the convenience of later analyses. We call ¢, , ,(q) the branching

£ A 1
Ly) \r1
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coefficient. We find its explicit form for the spin-1 csos model using the calculation
method for X, referred to in the previous section. At first we shall give the result
for the L(= odd)-state spin-1 CS0s model. Its branching coefficient is expressed as

—1/16 o
¢y sald) = 23'—“43(@2{4’(‘?”2) 3 DI L2

n=—00

+¢(ql/2) i (_)nq[L(L—Z)/21(n+J/L(L—2))2} 4.2)

n==00

for s = 1,3 where J =0,1,2,...,L(L -2) and

#(q") <« —2)/2n —2))
croald) = d)Eq}g Y @D/ A1) 4.3)

nNS—00

for s = 2 where J = 1/2,3/2,...,L(L —2)/2. The values of J = J(r,s,a) are
determined by a definite rule. Let us explain the rule by the model with L = 35
(figure 2(a)) as an example. The corresponding values of J are listed in tables 1 and
2. At first let J(0,1,0) = Oand J(1,2,0) = L/2. Next fill the tables diagonally from
the upper left to the lower right with these integers or half odd integers increasingly
and then decreasingly. The top and bottom sides of each of the tables are identified.
The left- and right-hand sides are also identified when s = 2, and identified with a
“wist’ with respect to s when s = 1,3.

Table 1. The values of J for L = 5 model for s = 1,3.

— ©0,2) (1,3} @24
(b’c)"{ 5)2,0) 53,1) “42)

(r 2)
_o 0 5 10
a= 15 10 5
_ 6 1 4
a= 9 14 11
= b 7 2
&= 3 8 13
12 13 8

a=3 3 2 7
6 1 14

a=4 9 4 1

As seen earlier, this branching coefficient is neatly expressed by modular functions.
We can convert it into another form in order to analyse its behaviour at ¢ =
e-s”zf € — 1. Indeed this can only be done by one technical, mathematical procedure
of the modular transformation (see (A.7)-(A.11) in the appendix). In terms of
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t=e¢ /% itis

. _ 1 _yis{ T n+1/2
(D) 2¢(t)\/L(L—2)[t (Hf”t ))

— 2nwd
% (1 +2 Z th/ZL(L—Z) Ccos _RL)

n=1 L(L - 2)
2z x 14 ¢® i (n+1/22/2L(L~2) (2n+ 1
+\/..(£];]( + ))nzz:ﬂ 08 5 @4
when s = 1,3 and
Cr,s,0(9) = L) (1 +2 i 472 /2L(L=2) g o] ) 4.5
T VAL AR S L(L-2) 5)

when s = 2.

Table 2. The values of J for L, = 5 model for s = 2.

(d,c) (L) (22) (3,3
0 2)

(r 1

a=10 1572 52 512
a=1 32 132 72
a=12 92 12 1R
a=3 92 112 iz
a=4 2 72 1372

4.2. The case of even L

Next we give the result for the L{= even)-state spin-1 ¢30s model. The branching
coefficient is

1/16

- 00
d - ot
Crs,e{) = W{ﬁb(—ql/z) > gtk 2)/8)(n+2J/ L(L-2)}

n=—0¢

o0
+¢(q1/2) Z (___)nq(L(L-2}/8)(n+2.]/L(L—2))1} (46)

n==-0q

for s = 1,3 where J = 0,1,2,...,L(L—-2)/2 and

B(q) = (L(L-2)/8)(n+20/L(L-2))
cr,s,a(Q) = W Z q 4.7)
n=—od
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Table 3. The values of J for L = § model for s = {, 3.

(b, ) = { 02 13 @24 (39
' ‘(}2,0) 53.1) 54,2) (5.3)

{r 3
a=0 % g
a=1 1 g
a=1 g %
! :
. s
! ;I

Table 4. The values of J for L = 6 mode! for s = 2.
(3, ¢) an @y 33 44
0 2

(r 1 K}
a=10 3 3
a=1 2 4
a=2 1 5
a=3 6 0
a=4 5 1
a=2>5 2 4

for s = 2 where J = 0,1,2,...,L(L — 2)/4. The values of J = J(r,5,a) are
determined by the same rule as for the L(= odd) state model. Here we shall present
the L = 6 model (figure 2(b)), as an example, in tables 3 and 4.

In terms of ¢, it results in

—_ 1 —-1/16 = n+1/2
raalq) = 1 (141t )
Croa(2) ¢(t)ﬁ(L-2)[ (nl;[[, )

oc
dnwJ
. thZ/L(L—Z)
x(1+2;‘ COS__L(L—Z))

n=1
id = 1L 22n + DwrdJ
[T+ 17)) 3 @12/ 502 oo 220 ¥ D]
+\/i(n_0(1+t ))nzut cOos ) J 4.8

when s = 1,3 and

1-1/16 2 kad dnwd
C-r,g‘g(q) = 2 ¢(t ) (1 +2 § thzlb(L—I) cos nw¥ ) (49)
a=1t

VZL(L =2) #(1)? L(L-2)

when s = 2.
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4.3. Result of the LsP for general L

In both of the above two (odd and even L) cases, the ¢, ,,.(g) can be expressed in
terms of the branching coefficients defined through the branchmg tule between the
elliptic theta functions,

=)

AEN )
Ol (2,4 >ei’.f13 =Y @) @10
1,2 ( + 4 ) Fa=0
ofr)(z,q) = ST (e)%d™ (2T 4 gy 2™ (4.11)

vEL,y=v+ji/2m

where m3; = m; + m, —2 and &,, &, = +1. These branching coefficients c(“":fj),(q)

depend on ml and ., although we are suppressmg these labels. With the explicit

et mn ot e fe A lios ha o

CXpICasions 107 1y = & listed in the appcuum “n...:; and \rx.u» one {an ‘ldei‘uuy

erna(@ = 1 [(1 48,0 (<D (@) + 54 () + D) - 37 (a)]
(4.12)

where the branching coefficients on the right-hand side are those with m; = L —2
and m, =4

Let us consider the normalization of the LsP. When multiplying four corner
transfer matrices, two of them are w /2-rotated by replacing the spectral parameter u
by —1—u and with an additional gauge transformation (3.4). In addition when we take
the double limit (2.1) the Boltzmann weight has been gavge transformed. Most of
these gauge factors will cancel one another out between the edges of the neighbouring
plaquettes, but those at the ‘boundary’ and central sites survive. The former are
irrelevant when the 1SP is considered, because we take a ratio of the partial traces in
order to get the Lsp. The latter is composed of G, (u)2x G, (—1—u)? = g~a(a-L)/2L
and

9 = (ea\/@(a)) = O(a) = «L/8 (ZZL) ol (z,z%). (413)

Multiplying these gauge factors to the ID sum (4.1) and neglecting a-independent
factors we get the partial trace as

u(alp,c) = O (2, 22) ¢, ,(2P). (4.14)
For the normalization of the LSP we take the summation of u(alb, ¢) with respect to
a. At first we can see that
L.l
P CHRICOBT SN CO) ISR CRD

a=0

-, +
= E r,s,:)(q;z)e("" +)(.’L' z?) - Z:CS,"E) o )@( +)L(:c z?
=0

= c“’”(xz)ef,,*,:”(m,ﬁ) - r;t)(m 0L (2,27

a0

=0 (4.15)
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because 7Y, (2, 22) = OV (2,22) and <P (q) = 7H(q) = 0 Next we
can prove that

-1
ST+ 8,0) (@) + €55, (29) 0 (2, 2%)
=0

L-1
= Y (1+6, 5)ch D)ol (2, o)
=0

L—
E 148, )4 (ahelhh) (z,2?)

_ Z‘—'(J"”(“’Z)GH )z, m2)+z ) @) (e,2?)

8,8 'r's L— a
=0

@( ,+)($ z?)

=2x Ot (2,2%) x =22
@5’2"")(1:’1‘.2)

(4.16)

using the theta-function branching rule (4.10). The identity (4.12) shows that we can
put the previous two sums together and get

(+ +)(1‘ 3:2)@( ’+)(:E z )

u(alb,c) = Oriz a (4.17)
2 uele oGV ()
Therefore the result of the ISP for the 2-fusion CS0Os model is given by
(+'+)(12 IZ)@( '+)(:L' r ) ,
P(alb,c) = Cpa,a(Z7) (4.18)

ot (2,290 (2, 22)

with branching coeflicient (4.12). Formula (4.18} is the main result of this paper.
We can write it in a more suitable form for analysing its critical behaviour as
follows

2L -2) Iy {mafL,t¥L)9,(1n, 1)
P(alb,c) =1/ - ﬂd(wr/(ﬁ'L_2),12/(L—2)1)1921(%Ws,t1/2)Cr,a,a(:tz)- (4.19)

Putting this together with (4.4) and (4.5) ((4.8) and (4.9)), the branching coefficient’s
expressions in terms of 1, we can see the Jeading terms from the critical point: when
L is odd

1/, 2rd
P(alb,c) = i (1 + 2¢1/2L-D) gog f("‘gr—_—z*)- + - ) (4.20)

and when L is even

P(atb,c) = (1 F 22 s AT ) : (4.21)

L(L-2)

at [
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5. Concluding remarks

In this paper we have obtained the LSP for the spin-1 (N = 2) csos model. We take
the double limit (low temperature and extreme anisotropy limit) of its Boltzmann
weights, obtain the weight function H(e,e,s) and the recursion relation for the 1D
configuration sum X, (a|b,c). We see that the thermodynamic limit of the 1» sum
is expressed by branching coefficients. Using theta-function identities we finally arrive
at an exact form for the LSP (4.18).

In [5] the Lsp of the spin-1/2 csos model (regime III of their A(Ll)_l model) has
already been given. Comparing it with that of spin-1 csos model in this paper, we
can recognize a systematic extension of these models in terms of the Lsp. The Lsp
of the spin-1/2 cs0s model is related to the theta-function branching rule (4,10) with
m; = L -1 and m, = 3, while that of the spin-1 csos model is related to the
rule with m; = L — 2 and m, = 4. The LspPs of both models formally have the
same combinations of the four branching coefficients as given in (4.12). Although the
fusion construction is a combinatorial procedure performed on the local Boltzmann
weights of the model, the resultant LSP seems to admit a systematic, mathematical
extension.

We already know examples which have a similar mathematical structure that,
in fact, governs hierarchies of elliptic solutions of the Yang-Baxter equation, and

thorafnrs hisrarchiac nf nffocritical lattice mndele Ac an evamnle and far a
MCICIone NICrarcmes of QOI=Crfcad: At MoLcis. A5 an oxamp:e, ang or a

comparison with our models, let us see what is known about the hierarchy of those
R$0S models in [3]. For the spin-/V/2 RS0S model the LSP is

oL (= 4)
GRS PG oyt (a?) .1)

RN

P(alb,c) =

where r = (b+c~N)/2, s=(b—c+ N)/2+1, and {75 (22) is that given in
(4.10) specified with yny = L — N and my, = N + 2,

Having been inspired by the resultant LsP forms of the unfused csos model, the
2-fusion csos model and the result of the N-fusion RS0S model, we may conjecture
on the form of the spin-N /2 csos model. That is

(+ +)(:I: :L.Z)@( ’+)(a: z )
ei&’:)N( ,xz)ei,mz(w,

where cr,a,a(mz) is defined by the same combination as in (4.12), and specified with
m=L-Nand m; =N+ 2.

There are some possibly substantial differences between (5.1) and (5.2). Two theta
functions in the first factor are replaced by those of another kind, and the branching
coefficients are different. The difference with respect to the branching coeflicients is
more substantial, since they cannot be obtained unless a full calculation of the 1D
sum has been completed. When one sees the definitions of the branching coefficients
such as (4.12) specified with m; = L — N and m2 N +2, at first one may probably
think that ¢, ,(q) is more complicated than >t (q). However, as seen in this
paper for the 2-fusion case, €,.,.(q) has a somewhat simpler form.

We shall give a naive analysns of the criticality of these models in the way of [2].
We refer the critical behaviour of the L-state spin-N/2 RsOs model,

P(alb,¢) = P(a) - (1+e -t +.-) (-3

P(alb,c) = ,_,s,a(m") (5.2)
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where

P,(a) = (4/L)sin*(wa/L) (54)
is the LSP for the critical model, and

A =3N/4L(L ~ N). (5.5)

The nome ¢ indicates the deviation from the critical point of the model. The factor
‘e’ which depends on a,b,c is the leading contribution from the boundary of the
system when the temperature is slightly lowered from the 7. If conjecture (5.2) is
true our fusion CSOS model] also has such a critical property,

Plalb,e)=P,-(1+e-t2+-.). (5.6)

Tn thic raca tha 10
i1l ULy Wade Uiv Lo

-]
-

fr th
1UI Ul

o
<
ma

P {I/L for odd L
¢ 2/L for even L

i

(5.7)

which is consistent with the fact that a critical fusion Cs0s model is equal to a vertex
model and P should not depend on « there. And from that conjecture the exponent

e Frrand ¢n ha
B IVUL W Ue

Ao { N/4L(L-N)  forodd L 68

NfL(L—-N) for even L.
According to the results in this paper this is correct for N = 2 ((4.20) and (4.21)).
This is also correct for N = 1 as was shown in [5]. Whether this (5.8) is also valid
for higher (N > 3) fusion csos models or not needs further investigation. Studies

on examining its validity are now in progress, while the calculation of LsP in other
regimes is another remaining problem.
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Appendix

Al Explicit form of the branching coefficients

[ o]
ﬂ: 2 ﬂz an
o @ =q"/® Y (£)ngt/m (A1)
n==00
1 =
sga{i forb_.Omoda A2
1 otherwise

k= jims — 33my L= j5ms+ j3my n=mm;. (A3)
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@)m,=3(j3=4;+7,—-1mod2)

—-1/24
gﬁ;ﬁ;(Q) J; %f’( ) ( ?gn(ti')i@ﬁi(@) (A.4)

Jz=1,3

, g~V
JiJ:?Js(Q) = sJa 26(q)? [¢( ¢/*) (e ( g;)m(q) % 9572)‘,1(@)

+ ()26 (gi2) (040)(g) £ ()10 T 0)] (A)

jz=2

it =P AL (o) (=0, (0). (46)

A2 Identities between modular functions expressed in terms of conjugate nomes g and 1

g/ H(l q )_\/_1/241‘[(1 (A7)

n=1
q—1/43 H(l + qn+l/2) — ¢/ H(1+ 1!u+1/2) (A8)
n=0 n=0
[e0] 1 o0
-1/48 1— n41/2 = __t1/24 1 " A9
q I:[( =5 nl;[ﬁ( +1) (A.9)
3 ey ¢ > 2
G D(ntafdy — [ € n*f2b bl
n;mq ,/4wb(1+2(n§;lt cos [2mb] )) (A.10)
- YR (B/D(ntafp) _ [ & — (n+1/2)/2b hid
ngm( Yo q ‘/41rb2(nz_;t cos [(2n+1)7rb]). (A11)
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