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Local state probability of higher-spin csos models 

w.c!lc, "bgi 
Wpanment of Physics, Faculty of Science, University of lbkya, Hongo, Bunkyo-ku, 
'lbkyo 113, Japan 

Received P July 1992 

AbslrscL An emet solution of the local State probability (spontaneous magnetization) 
of a fusion cyclic solid-on-solid (csos) model is obtained for a special (%fusion) case. It 
is composed of ratios of theta functions and branching coefficients. Using the modular 
property its critical behaviour is analysed. In addition, a mnjeclure for the local stale 
probability of the Nfuusion csos model is proposed. 

1. Introduction 

Local state probabilities (UPS)  of many 2D lattice models are modular functions. 
Considering the reason why the spontaneous magnetization of the ZD Ising model is 
obtained exactly [l], one notices that there is a hidden structure of modular functions. 
This structure is more explicitly exposed [2] for the eight vertex solid-on-solid (svsos) 
model. The 8vsos model is a generalization of the  XI king model and the hard 
hexagon model, satisfying the Yang-Baxter equation, and is exactly solved by the 
corner transfer matrix method. The state variable takes 1,2, ... , L - 1(> 3). Its 
Boltzmann weight is parametrized by elliptic functions with nome p. The final output 
ISP is expressed in a q-series of the conjugate nome q. 

Subsequently we only consider the so-called regime I11 cases [2]. This regime 
corresponds to an ordered phase between T = 0 and T = T,. After the corner 
transfer matrix calculation the ISP is given in a low-temperature expansion form. At 
this stage we cannot see the critical behaviour of the system since all terms in the 
expansion contribute at the critical p in t .  However if we can sum the infinite series 
as a modular function or a combination of modular functions, we can see the critical 
behaviour of the system by a conjugate modulus transformation. 

The UP of 8vsos model was later shaped in compact forms of affine Lie algebra 
characters (and their branching coefficients) (31. The characters are ratios of theta 
functions. The branching coefficients are expansion coefficients in the theta-function 
sums-of-products identities [3]. For higher-spin extensions (fusion model) of the 
8vsOS model the ISPS have the same structure [3], i.e. they comprise affine Lie 
algebra characters and branching coefficients. We shall refer to this model as the 
spin-N/2 restricted solid-on-solid (RSOS) model. 

Recently we have presented a new hierarchy for solvable models, the higher-spin --" ..-a., r., ..,. .__. ~ .L.̂  --A,., L.. .-..":-- __^^^_I &L^ .(I1 w w  inuuu (41. we wnmuucu  inn IIKUCI vy UIG iusiuii piuvauir. uuw uic fiill 
model in [SI or from the csos model in [6]. 

As we have pointed out there, the spin-N/2 CSOS model can be constructed if 
N < L - 1 (N < L/2 - 1) for odd (even) L. In this paper we aim to calculate the 

0M5~470/92/246593+16H17.50 @ 1592 IOP Publishmg Ltd 6593 



6594 T Takngi 

LSP of this higher-spin CSOS model. Although the method used in this paper can be 
applied to N-fusion models with arbitrary N, we shall concentrate on the calculatiom 
for the 2-fusion case specifically. The main part of the calculation is a summation 
over paths. We expect the resulting expression to be. in terms of theta functions. we 
make the calculation into a recursion formula and iterate the recursion relation to a 
sufficiently large order. Then we compare the calculated result with the expansion of 
the expected expression. We use REDUCE for the calculations. 

by the corner transfer matrix method. The techniques shown here are applied to our 
csos model in section 3. In particular we shall fully analyse the spin 1 (2-fusion) 
csos model and obtain a recursion relation. In section 4 we evaluate the solution 
of this recursion relation in the thermodynamic limit, and obtain the LSP in terms of 
modular functions. In section 5 we give some concluding remarks. 

We use two 
nomes q and t(= p L l 2 )  (0 < q ,  t < l), they are conjugate to each other 
((log q)(log t) = 4 d ) .  We parameterize the nomes as follows, 

In section 2 we briefly exp!ain how one an Ca!cu!atc the U P S  of these made!s 

Here we shall give some notation which will be used later. 

with a real parameter E.  The nome q is used for a low-temperature parameter, while 
the nome t measures the deviation from the critical point. We also use the following 
notation 

We use the parameter w as a label that characterizes the double limit, E -+ 0 and 
simultaneously U -+ 0, with a k e d  value of U / & .  The former corresponds to the low 
temperature limit, while the latter means the extreme anisotropy limit. 

2. Calculation of the ISP from the Boltzmann weight 

In this section we shall briefly summarize the LSP calculation by the corner transfer 
matrix method, that is used in the next section. 

Define P ( a l b , c )  as the probability, in classical statistical mechanics, for a 
particular site having the spin value a when a background configuration is specified 
by b,c.  This P is the UP. A background configuration b ,c  is a type of boundary 
condition for an infinitely extended lattice system on which the checkerboard b,c 
configuration is realized at the low-temperature limit. (We only consider the 
case where a and b are on the same sublattice.) In later sections we also use 
T F i ( b + c - N ) ,  s E i ( b - c +  N ) + 1 ,  in order to label a background configuration 
for N-fusion (spin-N/2) models. 

We calculate the LSP by using the corner transfer matrix method. From h ~ l  
Boltzmann weights, parametrized by elliptic theta functions and satisfying the Yang- 
Baxter equation (this is crucial for the following calculation techniques, see [2,7]), we 
mnstruct a corner transfer matrix. Due to the Yang-Baxter equation and therefore 
the commuting Tow-to-row transfer matrices, the corner transfer matrix becomes an 
exponential function with respect to the spectral parameter ZL in the thermodynamic 
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limit. We can diagonalize the matrix in a non-trivial way by taking a double limit of 
two parameters, the spectral parameter U and the elliptic nome p = 

U - - 0  E +0, (U/€) : fixed. (2.1) 

This diagonalization arises from the following diagonal property of the local 
Boltzmann weight S in the double limit (2.1), 

where w = xu. In general a matrix element of a corner transfer matrix is constructed 
as a summation over infinitely many internal spin configuraions, so it has infinitely 
many terms. However by this diagonalization all but one term should vanish for each 
of the diagonal elements. In this diagonalized corner transfer matrix, its diagonal 
elements are labelled by admissible paths (ol, 02,.. .) of the model. If the system is 
infinitely large, they are exactly the eigenvalues of the matrix even for finite values 
of U and E .  Let A(u), B(u) ,  C ( U )  and D ( u )  be the four corner transfer matrices 
corresponding to the four quadrants of the ZD space as usual [7]. We assume that they 
are given to a specified background configuration b ,  c. Because of the symmetries in 
the local Boltzmann weights, C(u) = A ( u )  and B ( u )  = D ( u )  = A(-1 - U) up to 
the gauge factors. We take a partial trace as 

d a l b , c )  = Tr(ut=a) A ( u ) B ( u ) C ( u ) D ( u )  (2.3) 

where the spin value at the central site is fixed to a. Having evaluated this trace, we 
can get the ISP as 

The partial trace p ( a l b , c )  is a ID configuration sum multiplied by gauge factors. 
First we give the finite sum X, over finite step paths. 

m 

Sm(ol,...,omtZ) = c j ' H ( o j , o j + , , ~ j t 2 )  (2.5) 
j = 1  

,& x Y ,  x-l--u , 

converted to qH('.'+). Aftenvards we take the limit m - 00 to obtain the true mace 
of the corner transfer matrix. 

The summation over paths means a particular combinatorial summation for each 
model, for instance restricted paths for the RSOS model and cyclically restricted paths 
for the csos model. The difference between the ISP (therefore the physics) of the 
models arises from the difference between the sets of these paths and between the 
weight function H ( o , o , * )  in (2.2). 

x-l-" - - x - ~ ,  the factor appearing in (2.2) has been 
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3. ISP calculation for fusion CSOS models 

Let us consider the U P  calculation for higher-spin csos models. For spin-N/2 RSOS 
models the weight function H is simply H ( a ,  b , c )  = la - c1/4 for all N [3]. But for 
spin-N/2 csos models, we find that the behaviour of the weight function H should 
depend on N. Due to the periodic property of the weights, spin configurations around 
a face that have such spin values as 0 or ( L  - 1) give exceptional weight function 
values. 

Subsequently we consider the spin-1 csos model exclusively. 'Ib make this paper 
self-contained we shall write its Boltzmann weights as in [4]. 

O(w,+ a +  u)O(w, ,+a - 1 - U )  

O(w, + a + 2)O(w,, + a - 1)H( 1 + U )  H (  U )  
+ 

O(w, + a + l ) O ( w ,  + a ) H ( 2 ) H ( l )  

H ( u ) O ( w , + a T u )  
H ( l ) O ( w ,  + a i 1)  

- - 

H ( 1 +  u)O(w,,+ a +  1 f U )  

H ( l ) O ( w , + a f l )  
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We use the following notation for the elliptic theta functions, 

m 

d l ( v ,  p )  = 2p1/'sin v 

d4( v ,  p )  = U( 1 - 2p"-'/2cos 2v + p2"-')( 1 - p " ) .  

(1 - 2pn cos 2v + pZn )( 1 - p " )  (3.2) 

(3.3) 

n = l  

m 

lZ=l 

These Boltzmann weights have the following symmetries 

where g, = efJo7i-+'T;;j. ( E ,  = fl, E ~ E , + ~  = (-)'). Let us denote by 
A ( u ) ,  B ( u ) ,  C(u) and D(u)  the comer transfer matrices with respect to the 
SE, NE, NW and sw quadrants of the 2D space, constructed from S,. Provided that 
the central spin value equals a, they satisfy C ( U )  = A(u)  and B ( u )  = D ( u )  = 
g,A(- l -  U) up to a-independent factors because of (3.4). 

Next let us replace the constituent Boltzmann weight S,, of A(u)  as follows 

where I = 

G I ( U )  = (. ) ( W ) . W ( U + W O ) / L )  

This transformed Boltzmann weight S also satisfies the Yang-Baxter equation and 
has a suitable form for the double limit (2.2). We are to obtain the weight function 
H ( o , o , e )  from this S, and to consider the recursion relation of X ,  given by this 
weight function. Denoting the SE quadrant corner transfer matrix constructed from 
S by d(u),  one can see that A ( u )  = d(u)G,(u) up to a-independent factors. In 
the thermodynamic limit the eigenvalues of this d(u) are labelled by the admissible 
paths of the model (ul ,u, ,  ...) and have such forms as (,')~;".Ij'H(o~~bj+l~aj+~). 
Putting all these together we have 

and the spectral parameter-dependent gauge factor G,(u) is 

(3.6) w(.) E (. - L.J)(~ - 1.j - 1) .  

A ( U ) B ( U F ( U ) D ( U )  

= G,(u)' x Ga(-l - U)' x ga x d(u)d(-l- u)d(u)d(- l -  U )  (3.7) 

up to a-independent factors. With respect to the j t h  term of (2.5) we have 

((.u)j.H(oj,uj+l,oj+ll)Z(( ,-l-U)j.H(o;,a,+,.oi+2))2 = pj.H(o;.o,+,,o;+d 

and since 
ca(%)2 Ga(-l - .)2 = ( I u ) ( + - ~ ) / 4 ~ ) ~  (z-l-u ( 4 - ~ ) / 4 ~ ) 2  = z - o ( r r - ~ ) / ~ ~  

(3.9) 

(3.8) 

1 
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the trace (3.7) and as a result the UP does not depend on the spectral parameter U 
as usual. 

Next we give the result for the weight function H of the model. As an example 
let us first show that for this model we have 

H(O,O,O) = H(L - 1, L - 1, L - 1) = 1. (3.10) 
Since. no gauge factor is needed for this configuration, we have 

a a  O(wo+a)O(wu+a- l )  

@(WO + a + W ( %  + a - 1)H(1+ U ) H ( U )  I -"(Y+l) /L,  

(3.11) . 
@(U, + a + l)O(w, + a)H(2)H(1) 1 + 

Assuming 0 < wu < 1 and taking the double limit (2.2) of the Boltzmann weight 
(3.11) we have 

for a = 0 
otherwise 

(the first term) + 

f o r a = L - 1  
otherwise. 

(the second term) -+ (3.12) 

Therefore we get (3.10). 
We also evaluate the double limit (2.2) and obtain the weight function H for all 

other configurations. We lind that they are indeed diagonal if 0 < wu < 1. The result 
is as follows. 

H ( a , b , c )  = I U - C ~ / ~  
if 

( a ,  b,  c )  # L - I), (L - 1 , l A  (2,0, L - 21, ( L  - 2,07213 
(1, L - 1, L - 3),(L - 3, L - 1,1),(0, L -2, L - 4), 

( L  - 4, L - 2,0),(0,0,0),(L - 1, L - 1, L - 1). 

( O J  -2,0),(1,L - 1>1)>(L - 1>1,1), 
(L1, L - 11, ( L  - 2,0, O), (O,O, - 2), 
( L  - l , L  - l , l ) , ( I , L  - l , L  - 1),(L -2,  L -2,0),  
( 0 , L  -2,  L -2) , (L -2,O,L -2) , (L - l , l , L  - 1) 

H(2,0, L - 2) = H(1,1, L - 1) = wu/2 

H(3,1, L - 1) = H(O,O, L - 2) = 1/2 + w0/2  

H ( 0 ,  L - 2, L - 4) = H(1, L - 1, L - 1) = 1 - wu/2 

H ( O , L - 2 , 0 ) =  H(1,L-1 , l )  = l - w u  

H(1, L - l , L  - 3) = H ( 0 ,  L - 2, L - 2) = 1/2 - wu/2 

H(L -2,0, L - 2) = H(L - 1,1, L - 1) = U" 

H ( a , b , c )  = H ( c , b , a ) ,  (3.13) 
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We are considering admissible paths (ul ,uz ,  ...) which satisfy lui - ui+ll = 0 , 2  
(mod L )  on the space with a periodic boundary (0 E L ) .  This weight function 
H ( o , * , e )  gives exceptional values for those passages ( u j ,  U ~ + ~ , U ~ + ~ )  which cross 
or lie on the ‘formal boundaries’ (0 and L - 1) of the space (figure 1). This shows 
that ( L  - l , L  - l ) , ( O , O ) , ( L  - l , l ) , ( l , L  - l ) , ( L  -2 ,O)  and ( 0 , L  - 2 )  are not 
allowed to be background configurations. Using (3.13) we can write the recursion 
relation of X ,  for this model. For simplicity we assume wo -+ +O. 

X,(alb,  b + 2)  1 q m f t  X m - i ( a l b f 2 , b )  

X,(alb, b - 2)  q” qm/Z 1 X,- i (a lb-  2 , b )  
( X,(a lb ,b)  ) = ( q m f 2  1 $’) ( x,- I (  a Ib, b) 

if b # 1,0, L - 1,  L - 2 

x, ( Q I ~ 3 )  Xm-l(a13, 1) 
X m - , ( 4 L 1 )  

q”/‘ 1 X,-,(alL - 191) 

I 1 qml’ 

\ X m t a 1 0 , L - 2 ) /  \ 1 q “ Z  1 J \ X m - i ( a I L - 2 , 0 ) J  

X , (a lL-  1 , L - 3 )  Xm-l(alL -3, L - 1) 

X,-,(alO, L - 2)  

qm q m / z  1 

(3.14) 

The initial condition is Xo(alb,  c )  = if c = b, b zk 2. We compute X ,  up 
to any tinite m using this recursion relation (3.i4) and obtain the iower order 
terms for X,. In fact up to order m / 2  the terms in X,(a lb ,c )  and those in 
limmwen-, X,(a lb ,c )  are exactly the same. 

4. Results of the UP for the spin-1 csos model 

4.1. The case of odd L 

The solutions of the recursion relation (3.14) for finite m may have cumbersome 
expressions. For the thermodynamic limit we can expect that they will have more 
beautiful expressions. Indeed they do. One observation is that when we compute X ,  
using the recursion relation, more and more large coefficients appear with respect to 
terms with large order of q. But if we multiply X ,  by (&(q)) ’  = (n:=l(l - ~ q ” ) ) z ,  
there remain only small coefficients for any order of q. By this observation we have 
been able to find that X ,  .(+(q))’ should certainly be expressed by theta functions. 
The following results are based on this type of computational work. 
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Figure 1. Fxceptional values of the weigh! funclion H[.,.,t 
(2-fusion) MS model. 

of the L-st; spin 1 

.. .-... . r--:> ^_^^ A: G.- 1 C.."i^" -~~ ".,.AO," E l p r r  L LI IL IYCI ILS "'dgralur ,<,I L - L Y O I Y I I  -> 

directly connected with either a full line or w a y  line is admissible on nearest-neighbour 
lattice sires. The pair wilh a way line is not allowed for a backgmund mnfigumtion: 
(0) 5-state model; [b)  6-state model. 

Each pa:: a[ S!B!C ..%fi.:lb!CJ 

We write the thermodynamic limit of the ID configuration sum as 

iim ~-,(~jb, = q ( h - ~ ! ! ~ - ~ z ! 4 ( ~ . - 2 ~ - . 2 ! 1 6 + 1 ! 8 + ~ z ~ 4 L  " r , s , a \ Y I  . , (4.1) 
7neven-m 

where T ( b  + c - 2)/2 and s 3 ( b  - c + 2)/2 + 1. The extra fractional power of q 
is introduced for the convenience of later analyses. We call ~ ~ , * , ~ ( q )  the branching 
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coefficient. We find its explicit form for the spin-l csos model using the calculation 
method for X ,  referred to in the previous section. At first we shall give the result 
for the L( = odd)-state spin-1 csos model. Its branching coefficient is expressed as 

for s = 1,3 where J = 0,1,2 ,... , L ( L - 2 )  and 

for s = 2 where J = 1/2,3/2,. .. , L ( L  - 2)/2. The values of J = J ( r ,  s, a) are 
determined by a definite rule. Let us explain the rule by the model with L = 5 
(figure 2(u)) as an example. The corresponding values of J are listed in tables 1 and 
2. At lint let J(O,l,O) = Oand 5(1 ,2 ,0)  = L/2. Next fill the tables diagonally from 
the upper left to the lower right with these integers or half odd integers increasingly 
and then decreasingly. The top and bottom sides of each of the tables are identified. 
The left- and right-hand sides are also identified when 5 = 2, and identified with a 
'twist' with respect to 5 when s = 1,3. 

'hbk 1. The values of J for L = 5 model for s = 1.3. 

0 5 10 
15 10 5 

6 1 4 
9 14 11 

12 7 2 
3 8 13 

a = 0  

o = l  

a = 2  

12 13 a 
3 2 7 0 = 3  

As seen earlier, this branching coefficient is neatly expressed by modular functions. 
We can convert it into another form in order to analyse its behaviour at q = 
e-8"2/C - 1. Indeed this can only be done by one technical, mathematical procedure 
of the modular transformation (see (A.7)-(All) in the appendix). In terms of 



lhbk Z ?he values of 3 for L = 5 model for B = 2. 

a = O  u/2 5R SR 
o = l  3R 13R 7/2 
0 = 2  90. 1R 11R 
n = 3  9R IlR U?. 
a = 4  3r2 7/2 13R 

4.2. The case of even L 

Next we give the result for the L ( =  even)-state spin-1 csos model. The branching 
coefficient is 

(4.7) 
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lbbk 3. Ihe values of J for L = 6 model for 8 = 1 .3  

(p 0 i 
0 6 
12 6 

a = 0  

0 - 1  1 S 
11 I 

8 2 
4 10 

0 = 2  

9 3 
3 9 

0 = 3  

8 10 
4 2 

a = 4  

I 11 
5 1 

0 = 5  

lhbk 4 The values of J for L = 6 model for 8 = 2 

o = l  2 4 
a = 2  1 S 
a = 3  6 0 
a = 4  5 1 
a = S  2 4 

6603 

for s = 2 where I = 0,1,2, ... , L ( L  - 2)/4. The values of J = J(T ,  s, a )  are 
determined by the Same rule as for the L ( =  odd) state model. Here we shall present 
the L = 6 model (figure 2(b)), as an example, in tables 3 and 4. 

In terms of t ,  it results in 

[t-1/16( f i ( l + t n + l / Z ) )  

+ ( w m .  n=U 
c7.,,,.(4) = 

m 4 n n J  ) 
x (1 + 2 y t 2 n 2 / L ( L - 2 )  cns 
I L ( L - 2 ) )  ' n=l  

m ] (4.8) L ( L - 2 )  
t2(n+1/2Y/L.(L-2) 2(2n + 1)nJ 

when s = 1,3 and 

(4.9) 

2t-W6 m @2 ( J 2 z q z . q  +( w n=l  
+ 2 t ~ n l ~ ~ ( ~ - ~ )  cos L ( L - 2 )  C 7 y , ' z ( 4 )  = 

when s = 2. 
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4.3. Result of the U P  for general L 

In both of the above two (odd and even L) cases, the ~ ~ , ~ , ~ ( q )  can be expressed in 
terms of the branching coefficients defined through the branching rule between the 
elliptic theta functions, 

&,,4 J,m ( z , q )  I ( E z ) Y q m 7 ’ ( Z - m y  + €1Zm7) (4.11) 
vE2,y:utjlZm 

where m3 = ml + m2 - 2 and E ~ ,  = 51. These branching coefficients c:::;z:),(q) 
depend on ml and m2, although we are suppressing these labels. With the explicit 
exii&aii h i  i r c 2  4 :ked ki iiie appeiidk ((A:) aiid (A.6)) OX ~ i i  ideiitib 

where the branching coefficients on the right-hand side are those with mi = L - 2 
and m2 = 4. 

Let us consider the normalization of the UP. When multiplying four corner 
transfer matrices, two of them are r/Zrotated by replacing the spectral parameter U 

by -1-U and with an additional gauge transformation (3.4). In addition when we take 
the double limit (2.1) the Boltzmann weight has been gauge transformed. Most of 
these gauge factors will cancel one another out between the edges of the neighbouring 
p!ape!tesj but those at the ‘houndary’ and central sites survive. The former are 
irrelevant when the SSP h considered, because we take a ratio of the partial traces in 
order to get the UP. The latter h composed of G,(u)2xG,(-1-u)2 = z-a(a-L)12L 
and 

g: = = @ ( a )  = zLI8 (T) 27rL @bti+)(z,z2). (4.13) 

Multiplying these gauge factors to the 1D sum (4.1) and neglecting a-independent 
factors we get the partial trace as 

p ( a l b , c )  = @ ~ i t ) ( z , z 2 )  , C ~ , ~ , ~ ( Z ’ ) .  (4.14) 

For the normalization of the UP we take the summation of p ( a l b ,  c)  with respect to 
a. At first we can see that 



(4.16) 

using the theta-function branching rule (4.10). The identity (4.12) shows that we can 
put the previous two sums together and get 

Therefore the result of the LSP for the 2-fusion csos model is given by 

with branching coefficient (4.12). Formula (4.18) is the main result of this paper. 

follows 
We can write it in a more suitable form for analysing its critical behaviour as 

Putting this together with (4.4) and (4.5) ((4.8) and (4.9)), the branching coefficient’s 
expressions in terms oi t, we can see the ieading terms from tne niticai paint: when 
L is odd 

+ 2t’~2L(L-2)cos 27rJ +...) 
L L ( L - 2 )  

and when L is even 

1 + 2t2/L(L-2)U)S 47rJ +...) 
L ( L - 2 )  

(4.20) 

(4.21) 
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5. Concluding remarks 

In this paper we have obtained the UP for the spin-1 (N = 2) csos model. We take 
the double limit (low temperature and extreme anisotropy limit) of its Boltzmann 
weights, obtain the weight function H ( o , o , o )  and the recursion relation for the ID 
configuration sum X,(alb,c). We see that the thermodynamic limit of the ID sum 
is expressed by branching coefficients. Using theta-function identities we finally arrive 
at an exact form for the UP (4.18). 

In [5] the UP of the spin-l/2 csos model (regime I11 of their A?l model) has 
already been given. Comparing it with that of spin-1 csos model in this paper, we 
can recognize a systematic extension of these models in terms of the UP.  The UP 
of the spin-l/2 csos model is related to the theta-function branching rule (4:IO) with 
ml = L - 1 and m2 = 3, while that of the spin-1 csOS model is related to the 
rule with ml = L - 2 and m2 = 4. The U P S  of both models formally have the 
same combinations of the four branching coeficients as given (4.12). Although the 
fusion construction is a combinatorial procedure performed on the local Boltzmann 
weights of the model, the resultant UP seems to admit a systematic, mathematical 
extension. 

We already h o w  examples which have a similar mathematical structure that, 
in fact, governs hierarchies of elliptic solutions of the Yang-Baxter equation, and 

comparison with our models, let us see what is known about the hierarchy of those 
RSOS models in [3]. For the spin-N/2 RSOS model the LSP is 

!k-:efn:e !iier2-:c!ties nf n!?=criti..! !nttice mnde!s. 'AS BE ex2mp!e, m d  fer 2 

where T E ( b  + c - N)/2,  s ( b  - c + N ) / 2  + 1, and c$:;:)(z2) is that given in 
(4.10) specified with ml = L - N and m2 = N + 2. 

Having been inspired by the resultant UP forms of the unfused CSOS model, the 
2-fusion csos model and the result of the N-fusion RSOS model, we may conjecture 
on the form of the spin-N/2 CFOS model. That is 

where cpd  is defined by the same combination as in (4.12), and specified with 
ml = L -  N and m2 = N + 2 .  

There are some possibly substantial differences between (5.1) and (5.2). Xvo theta 
functions in the first factor are replaced by those of another kind, and the branching 
coefficients are different. The difference with respect to the branching coefficients is 
more substantial, since they cannot he obtained unless a full calculation of the ID 
sum has been completed. When one sees the definitions of the branching coefficients 
such as (4.12) specified with ml = L - N and m2 = N +2, at first one may probably 
think that ~ ~ , ~ , ~ ( q )  is more complicated than c$;;,i)(q). However, as seen in this 
paper for the 2-fusion case, ~ ~ , ~ ! ~ ( q )  has a somewhat simpler form. 

We shall give a naive analysls of the criticality of these models in the way of [2]. 
We refer the critical behaviour of the L-state spin-N/2 RSOS model, 

, I  

P(alb,c)  = P , ( a ) .  (1 + . t A  + .. .) (5.3) 
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where 

p,(a) = ( 4 / ~ ) s i n ~ ( r r a / ~ )  

is the U P  for the critical model, and 

(5.4) 

A = 3 N / 4 L ( L -  N). (5.5) 

The nome 1 indicates the deviation from the critical p i n t  of the model. The factor 
'e' which depends on a ,  b, c is the leading contribution from the boundary of the 
system when the temperature is slightly lowered from the T,. If conjecture (5.2) is 
true our fusion (SOS model also has such a critical property, 

P(alb,c)= P c . ( l + o . t A +  ...). (5.6) 

Lya =se me s p  fGr me &%&--I ;.;,=de! 2 

(5.7) 

which is consistent with the fact that a critical fusion cjos model is equal to a vertex 
model and P should not depend on a there. And from that conjecture the exponent 

fcGa(j to && 

N/4L( L - N) 
N / L ( L -  N) for even L. 

for odd L 
A = {  

According to the results in this paper this is correct for N = 2 ((4.20) and (4.21)). 
This is also correct for N = 1 as was shown in [5]. Whether this (5.8) is also valid 
for higher (N 2 3) fusion DOS models or not needs further investigation. Studies 
on examining its validity are now in progress, while the calculation of UP in other 
regimes is another remaining problem. 
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Appendix 

AI. Erplicit form of the branching coeficients 

qa2 /2b  2 ( * ) n q ( b / 2 ) m z t a m  
a , b  

n=-cc 

{ for bEOmod  a 
E ;  

otherwise 



A2 Identities between modular functions expressed in terms of conjugate nomes q and t 

(-4.7) 

(-4.9) 
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